The Laplacian

Another differential operator used in electromagnetics is the Laplacian operator. There is both a scalar Laplacian operator, and a vector Laplacian operator. Both operations, however, are expressed in terms of derivative operations that we have already studied!

The Scalar Laplacian

The scalar Laplacian is simply the divergence of the gradient of a scalar field:

$$
\nabla \cdot \nabla g(\bar{r})
$$

The scalar Laplacian therefore both operates on a scalar field and results in a scalar field.

Often, the Laplacian is denoted as " $\nabla^{2 "}$, i.e.:

$$
\nabla^{2} g(\bar{r}) \doteq \nabla \cdot \nabla g(\bar{r})
$$

From the expressions of divergence and gradient, we find that the scalar Laplacian is expressed in Cartesian coordinates as:

$$
\nabla^{2} g(\bar{r})=\frac{\partial^{2} g(\bar{r})}{\partial x^{2}}+\frac{\partial^{2} g(\bar{r})}{\partial y^{2}}+\frac{\partial^{2} g(\bar{r})}{\partial z^{2}}
$$

The scalar Laplacian can likewise be expressed in cylindrical and spherical coordinates; results given on page 53 of your book.

The Vector Laplacian

The vector Laplacian, denoted as $\nabla^{2} \boldsymbol{A}(\overline{\mathrm{r}})$, both operates on a vector field and results in a vector field, and is defined as:

$$
\nabla^{2} \mathbf{A}(\bar{r}) \doteq \nabla(\nabla \cdot \boldsymbol{A}(\bar{r}))-\nabla \times \nabla \times \boldsymbol{A}(\bar{r})
$$

Q: Yikes! Why the heck is this mess referred to as the Laplacian ?!?

A: If we evaluate the above expression for a vector expressed in the Cartesian coordinate system, we find that the vector Laplacian is:

$$
\nabla^{2} \boldsymbol{A}(\bar{r})=\nabla^{2} A_{x}(\bar{r}) \hat{a}_{x}+\nabla^{2} A_{y}(\bar{r}) \hat{a}_{y}+\nabla^{2} A_{z}(\bar{r}) \hat{a}_{z}
$$

In other words, we evaluate the vector Laplacian by evaluating the scalar Laplacian of each Cartesian scalar component!

However, expressing the vector Laplacian in the cylindrical or spherical coordinate systems is not so straightforward-use instead the definition shown above!

